15th Korea-US Forum on Nanotechnology

Biomimetic Hierarchical Structures for Low Power Gas Detection

Byung Yang Lee Mechanical Engineering, Korea University

Jul 12, 2018

Contents

Introduction

Nanocellulose

Peptide Nanowires

Conclusions

Man-made Hierarchical Structures

Colors in Nature

In nature, **structural color** can be achieved through the interference effect of ordered fibrous nanostructures which scatter light coherently

Turkey can change their skin color by expansion of the collagen structures.

One Example: Cellulose

- \triangleright Structural color in plants
 - Circularly polarized reflectance of cellulose film
- ▷ Structural color of leaf beatles
 - Vivid color of Cellulose nanocrystals self-assembly

Let's Learn from Nature

M13 Bacteriophage (Virus)

Structure of M13 Phages
 (Monodispersity)

Liquid Crystalline Behavior

Nematic

Smectic

P/2

Cholesteric

Genetically incorporated functional peptide

ORF

- Measuring environmental hormones; Early Detection of Food Deterioration;
 Disease Diagnosis
- •Material: Self-assembled virus film (M13 bacteriophage)
- •Mechanism: Swelling/Deswelling of Phage Film \rightarrow Color Change of the Film

Part |. Cellulose nanocrystal (CNC films)

- Previous research
- Research concept
- Results

Research motivation : Nanocellulose

A Cellulose Iβ - Axial

E CN Reinforced Matri

1000

10.000

C BC Neat Films D CN Neat Films

0.1

0.01

10

100

High mechanical property

half pitch

Self-assembly

P/2

50 µm

Optical property

Previously four major techniques has been proposed...

1. Chen additi	nical- ves	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	•	Add chemical additives to control the intervals of CNCs Ionic liquid, PEG, Glycerin, etc
2. Vacu assis	um- ted		•	Add chemical additives to control the intervals of CNCs Fastest fabrication method Limited substrate
3. Sonic induc	ation- ed	sonication sonication e e e e e e e e e e e e e e e e e e e	•	Add vibration energy to control the intervals of CNCs Reversible process, hard to maintain
4. Spin-	coated		•	Mechanically laminated thin film Limited thickness

Property of CNCs

Nanoscale Size

Lagerwall, Jan PF, et al. NPG Asia Materials 6, 80 (2014).

Prepared rod-like CNCs have property of crystallinity and helical self-assembly properties

CNC helix from chiral

CNC Films – Dip and Pull Method

- Schematic of the fabrication of the CNCs-based color film.
- Ionic liquid (BimimCl) interacts among CNCs as described in insert figure.
- The substrate was extracted in slowly controlled manner from the ionic CNCs solution.
- According to the speed, the thickness of CNC films and their reflection were varied.

CNC films – Surface & Cross-sectional view

- AFM images of the film showed localized alignment.
- SEM Side view image of CNC-based colored film showed layered structure.

- The thickness was controlled by pulling speed during assembly process.
- The colors were controlled by modulating the pulling speed during assembly process.
- Refractive index was constant, regardless of pulling speed

CNC films – Thin film model simulation (FDTD)

For constant refractive index, and increasing thickness as a variable, we fitted reflectance

of the CNC films with FDTD

Deviation was caused by roughness of the surface

Part ||. CNC color film gas sensors for aldehyde gas detection

Nanocellulose + structural color Gas sensor

Disposable convenient gas sensor

- Environmental friendly
- Low cost
- Degradable device

Chemical reaction induced mechanical structural change

(UIUC, Suslick Group)

CNC sensors – Surface modification

- At surface of the CNC color film, hydroxyl functional groups were substituted with amine functional groups.
- The increasement indicates that numerous APTES molecules attached to the surface of the CNCs thin film, at XPS bonding energy range of 399–401 eV. (S1 shell electron of nitrogen).

CNC sensors – Detection with color shifting

- Optical images of film's and trend of RGB color intensity change during target gas detection and recovery (formaldehyde, N2 ambient).
- No amine functionalization → no color change

- Increase in C-H and C=N bond indicates etherification between aldehyde and amine functionalized CNCs surface.
- Chemical reaction caused mechanical swelling of CNCs bundles, so the thickness of the CNC film increased and the colors of the CNC film changed.

CNC sensors – Sensitivity & Selectivity

- PCA of color shift reaction enables distinguishing various types of gases
- ΔRGB visualization generally shows the selectivity to aldehyde gas against non-aldehyde gas.
- The dissociation constant K_d (7.3 ppm) shows the sensitivity of the color film sensor quantitively.

Part III. Lysine-rich Peptide Nanowires

Lysine-rich Peptide Amphiphiles (LRPAs)

Cowork with Prof. Woojae Chung (SKKU)

Palmitoyl-GGGKKK [Peptide Amphiphile(PA)]

Peptide Nanowires

Fingering Effect: Not Good

Control of pH

con	n

Substrate	Aluminum-coated silicon wafer			
Pal-G3K3 Solution	3K3 Solution Solvent : Phosphate buffer (20mM / pH 3, 5, 7, 9) Concentration : 10 mg/mL			

Structural Color Matrix Characterization

JW Oh, B.Y.Lee et al. *Nature* Communications *5*, 3043 (2014)

• Pulling rate affects on structure of the nanofibers.

Propanal Gas Detection

Structural Color Change

Initial

After exposure

- After amine blocking(by acetylation) the pattern show inappreciable color changes of propionaldehyde exposure.
- Peptide amphiphile-assembled structures showed swelling with thickness increase upon interaction with aldehydes. (profiler)

- Measurement of DRGB between aldehydes and non-aldehydes
- 2D-PCA analysis shows the separation between aldehydes and non-aldehydes
- The results confirmed that peptide color-film sensor has great potential of aldehyde-specific sensor.

Future Applications

Food Deterioration (~10 ppm)

IAQ (~0.2 ppm)

Industry (2~6 ppm)

Easy to use, Low-cost, Distributed Monitoring

Public Safety (~40 ppb)

- Basic Building Blocks \rightarrow Structures \rightarrow Functions
 - Biomimetic
 - Biological
 - Nature-extracted
- Challenges: Efficient Film Fabrication Methods, Large-Area, Repeatability, Quantitative Detection
- Diverse Applications:
 - Gas Detection
 - Paper Electronics
 - Food Spoilage, etc

Acknowledgments

Students

- Wonbin Song, Gyuyeob Oh, Hyung Soo Kim, Do Hoon Lee
- Research Groups
 - Prof. Woojae Chung (SKKU)
 - Prof. Jinwoo Oh (Pusan National Univ)
 - Prof. Seung-Wuk Lee (UC, Berkeley)

Thank you for your attention.

Structural color for sensor application

Structural color for sensor application

Structural Color Matrix Characterization

 The nanofibrous structures with larger diameter exhibited a longer wavelength colors.

타겟 가스와의 결합 반응 연구

Conclusion

Cellulose nanocrystal colored thin films

- Developed method for tuning color of nanocellulose film utilizing material's unique properties.
- > Observed micro/nano structure of the color film and deviation caused by fabrication condition variance.

CNC color film for aldehyde gas sensors

- Developed method for tuning color of nanocellulose film utilizing its unique properties.
- Observed micro/nano structure of the color film and deviation caused by the fabrication condition variance.